Some Asymptotic Behaviors Associated with Matrix Decomposition

نویسنده

  • HUAJUN HUANG
چکیده

We obtain several asymptotic results on the powers of a square matrix associated with SVD, QR decomposition and Cholesky decomposition. 1. Yamamoto’s theorem Given X ∈ Cn×n, the eigenvalue moduli of X are always less than or equal to the spectral norm of X since ‖X‖ := max ‖v‖2=1 ‖Xv‖2 and if Xv = λv for some unit vector v, then |λ| = ‖Xv‖2 ≤ ‖X‖. So for all m ∈ N, r(X) ≤ ‖X‖ ≤ ‖X‖, where r(X) denotes the spectral radius of X. The following is the celebrated Beruling-Gelfand’s theorem (the finite dimensional case) [9, p.235, p.379]. Theorem 1.1. Let X ∈ Cn×n. then (1.1) lim m→∞ ‖X‖ = r(X). Needless to say, (1.1) is true for all norms since they are all equivalent. We now provide an elementary proof which is different from those in [11, 7, 2, 8]. Proof. Since ‖ · ‖ is invariant under unitary similarity, by Schur triangularization theorem, we may assume that X = T is upper triangular with ascending diagonal moduli |t11| ≤ · · · ≤ |tnn|. When X is nilpotent, that is, r(X) = 0, (1.1) is obviously true. Hence we may assume that X is not nilpotent so that r(X) = |tnn| 6 = 0. Write Tm = [t ij ] ∈ Cn×n which is also upper triangular. For 1 ≤ i ≤ j ≤ n,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Asymptotic Behaviors Associated with Matrix Decompositions

We obtain several asymptotic results on the powers of a square matrix associated with SVD, QR decomposition and Cholesky decomposition.

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

An Asymptotic Behavior of Qr Decomposition

The m-th root of the diagonal of the upper triangular matrix Rm in the QR decomposition of AXB = QmRm converges and the limit is given by the moduli of the eigenvalues of X with some ordering, where A,B,X ∈ Cn×n are nonsingular. The asymptotic behavior of the strictly upper triangular part of Rm is discussed. Some computational experiments are discussed.

متن کامل

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Kazhdan–lusztig Cells and Decomposition Numbers

We consider a generic Iwahori–Hecke algebra H associated with a finite Weyl group. Any specialization of H gives rise to a corresponding decomposition matrix, and we show that the problem of computing that matrix can be interpreted in terms of Lusztig’s map from H to the asymptotic algebra J . This interpretation allows us to prove that the decomposition matrices always have a lower uni-triangu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007